المعين NO FURTHER A MYSTERY

المعين No Further a Mystery

المعين No Further a Mystery

Blog Article

نختار الطريقة المناسبة لحساب مساحة المعين حسب المعطيات الموجودة في المسألة، وسنشرح ذلك بأمثلةٍ في الفقرة التالية..

الزوايا فيه اثنتان حادّتان واثنتان منفرجتان، وفي حال كانت إحدى هذه الزوايا قائمة يُصبح الشكل مربّعاً.

ما هو شكل قاعدة الهرم الخماسي؟ الهرم الخماسي هو شكل ثلاثي الأبعاد، تكون قاعدته على شكل مضلع خماسي منتظم...

عندما يكون get more info القطر الأقصر مساويًا لطول أحد ضلعي المعين، فإن اثنين من المثلثات المتشكلة بين الأقطار سيكونا متطابقين.

المعين: أضلاع المعين ليست متعامدة مع بعضها البعض، وفقط الأضلاع المتقابلة متساوية.[١]

هل كان المقال مفيداً؟ نعم لا لقد قمت بتقييم هذا المقال سابقاً

القانون الثاني: مساحة المعين = ارتفاع المعين × طول قاعدة المعين، بحيث أنّ ارتفاع المعين: هي طول المسافة العمودية بين أي ضلعين متقابلين.

هناك العديد من طرق حساب مساحة المعين التي يمكن استخدامها بكل سهولة عند معرفة المعطيات اللازمة لكل طريقة، فمساحة المعين تُعبّر عن المنطقة المحصورة بين أضلاعها الأربعة والتي تكون بالوحدة المربعة، ومن أبرز طرق حساب مساحة المعين ما يأتي: استخدام طول الأقطار

أقطار المعين عمودية على بعضها وتصنع أربعة مثلثات قائمة من نقطة التقاطع.

المعين ويُلفظ بضمّ الميم، هو أحد الأشكال الهندسية رباعي الأضلاع ( مُضلّع رباعي بسيط) تتساوى أطوال هذه الأضلاع جميعها، أو يمكن تعريفه على أنه شكلٌ يتكوّن من مثلَثَين متساويَي الساقَين لهما قاعدة مشتركة وهذه القاعدة المشتركة محذوفةً، ويُعتبر على أنّه متوازي الأضلاع الضلعَين المتجاوبين فيه متساويَين، وكونَ المعين من المضلّعات فإنّ له محيطاً ومساحةً بقوانينَ خاصةٍ به.

لحساب مساحة المعين ، ما عليك سوى استخدام الصيغة التالية.

المعين عبارة عن شكل هندسي ثنائي الأبعاد (طول و عرض)، يتكون من أربع أضلاع (كالمربع و المستطيل).

يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:

متوازي أضلاع ( متقاطع)  · مُعيّن  · مستطيل  · مربع  · شبه منحرف ( متساوي الساقين  · مماسي)  · طائرة ورقية (قائمة الزاوية)

لن يتم نشر عنوان بريدك الإلكتروني. الحقول الإلزامية مشار إليها بـ *

Report this page